Posts

PET Recycling – From Bottle to Filament

Recycling. A word often related to large companies receiving tons and tons of paper or plastic in an effort to reduce our carbon footprint. However if we look at plastic bottles for instance, humans buy a million plastic bottles per minute, and 91% of all plastic is not recycled. This article is going to cover what makes plastic recycling so important, how to recycle PET and the future of recycling in 3D printing.

What is PET Recycling?

Focusing on plastic bottles here, they have one huge advantage – unlimited recycling potential. PET is one of the few polymers that can be recycled into the same form over and over again. Think of it as a closed-loop recycling solution.

PET recycling loop
The “closed-loop” of PET recycling. Image via PETCO

Recycled PET, or rPET, can be used to make many new products. This can range from clothing, automotive parts, packaging as well as bottles for food/non-food products. Depending on the application required, rPET will be blended with the original PET.

What Are The Uses of Recycled PET (rPET)?

As mentioned above, rPET has many great uses, which includes:

  • Food containers
  • Polyester carpet fiber
  • Fabric for T-shirts
  • Athletic shoes
  • Luggage and upholstery
  • Sweaters and fiberfill for sleeping bags and winter coats
  • Industrial strapping
  • Sheet and film
  • Automotive parts
  • New PET containers
Some recycled PET products

Using rPET in place of the normal or virgin PET has substantial environmental impacts as well as reducing overall energy consumption.

Creating Our Own Filament from Plastic Bottles

Now that we’ve covered the background of recycling PET, how exactly does one go about doing the actual recycling? The one method is simply going to your local recycling company and dumping your plastic waste there, or having it picked up at home if that company provides a pick-up functionality. The other method though is a bit more rewarding – doing it yourself.

We wanted to test of normal plastic bottles can be turned into 3D printing filament. The following is a quick summary of our tests to turn around 30 bottles into filament.

  • Water bottles were collected, cleaned (properly) and any external caps or seals were also removed
  • The bottles were then vacuum sealed and heated to reduce their size
  • Once cooled the bottles were cut into smaller chunks with a saw and a pair of scissors
  • After that, the pieces were shredded into tiny pieces using our SHR3D IT
  • The pieces were then dried at a temperature of 160°C for 4 hours
  • The PET was then fed into our Next filament extruder
  • After multiple tests at different nozzle diameters and temperatures, our team ended up with a great result of PET filament
PET Filament Final Result
Final results of the filament

If you’d like to read the complete test and the different results, you can find the document here.

The Future of Plastic Recycling in 3D Printing

The biggest issue that faces 3D printing recycled filament – dirt. With the above experiment, just cleaning those bottles took a great deal of effort. Now imagine doing it with tons of plastic, often coming from dumps that have been contaminated all forms of impurities.

Also, one has to take note that different types of plastic produce different types of filament. High-density polyethylene — shampoo bottles, for example — are relatively easy to convert into filament, but it’s difficult to print with because it shrinks more than other plastics as it cools. On the other hand, PET, prints well but is brittle, making it difficult to spool as filament.

Recently, we saw the US Department of Defense (DoD) is exploring 3D printing feedstock made from plastic containers that have been left on the battlefield, which can hopefully be reproduced in other government sectors. There’s also Ethical Filament, a company focused on promoting the concept of recycling to produce ethical 3D printing filament that is sold to improve the livelihoods of waste pickers and their communities worldwide. Then there’s the Perpetual Plastic Project (PPP), which is an installation which can directly recycle old plastic drinking cups into 3D printing gadgets as well as other plastic products if needed.

While there is more and more aware of using recycled filament for 3D printing, we still have a long way to go. Hopefully, with the rise in 3D printing over the last few years, more emphasis is being placed on plastic recycling.

 

3devo launches the first Industrial Desktop Filament Extruders

3devo recycler next to four filament colors in 1.75mm and 2.85 and also orange and green granulate.
The 3devo Industrial Desktop Filament Extruder

3devo has just launched not one but two Industrial Desktop Filament Extruders, the 3devo NEXT 1.0 and 3devo Advanced. Whereas there have been several notable maker made filament extrusion devices and there are many different types of large industrial extruders available the 3devo machines are the first of their kind. The NEXT and Advanced put high reliability, repeatability and tolerances in a small form factor. For the first time a robust and reliable industry grade filament extruder device is available for your desktop. The NEXT Level and Advanced are the world’s first Industrial Desktop Filament Extruders.

On the left we have the blank anodized filament recycler and on the right the black powder coated model.
The Blank Anodized and Black powder coated 3devo NEXT and 3devo Advanced, front and side view respectively.

The 3devo NEXT 1.0 Next Level is targeted at makers, 3D printing shops and universities that wish to:

  • Lower the cost of 3D printing by a factor of 7 by using regrind or virgin pellets to make filament.
  • Wish to lower the environmental cost of 3D printing by recycling materials such as ABS or PET to make 3D printing filament.
  • Simultaneously lower the financial and environmental cost of 3D printing to approximately $1.25 per Kilo of material by using readily available recycled materials in house.
  • Have significant amounts of old 3D prints, unused 3D prints, missprints or old filaments that they wish to recycle.
  • Wish to experiment with creating their own filaments or making new 3D Printing materials.
3dprint, 3devo, filament extruder
The 3devo Industrial Filament Extruder, side view.

The 3devo NEXT 1.0 Advanced has been specifically created for compounders, extrusion companies, researchers, plastics companies, universities and 3D printing companies who wish to:

  • Accelerate the pace of plastics innovation by allowing for cost effective small batch production of new grades, new materials or variants.
  • Increase the rate of plastics innovation by allowing for more experimentation at higher rates by placing a filament extruder tableside to the individual researcher.
  • Create their own grades or types of 3D printing filament.
  • Create their own grades or types of plastic or new plastics.
  • Produce up to 0.7 Kg of 3D printing filament per hour.
Spool of material and virgin granulate plastic.
Spool of material and virgin granulate plastic with some 3D printed parts.

Both the 3devo NEXT 1.0 Next Level and the NEXT 1.0 Advanced:

  • Are manufactured in the Netherlands.
  • Have independent heating zones with independently set temperatures (3 heating zones for the NEXT and 4 for the Advanced).
  • Are built to last.
  • Have a Self-regulating filament diameter control system. (This lets you set the desired diameter and ensures for consistent output of the extruded filament).
  • A capacity of up to 0.7 Kg of material per hour.
  • A diameter sensor with 43 Micron accuracy.
  • Use high end materials and parts.
  • Have a hardened Nitrite steel extruder screw with compression zone.
  • Have been designed to supply variable torque at consistent RPM.
  • Have high precision RPM encoder feedback.
  • Have automated motor control.
  • An Extrusion diameter that can be set between: 0,5 – 3,0 MM
  • Have Hoppers with Built-in material level sensor (this lowers the risk of ‘dry running’).
  • A powerful cooling system for high speed extrusions.
  • Automatic spool winding.
  • An easy to use spool mount that can variably set for different spools.
  • Have an easy to use interface.
  • Have material presets for ABS and PLA.
  • Let you set and define your own preset materials settings as well.
  • Let you manually adjust temperatures and speeds on the fly.
  • Are stand alone devices that do not need a dedicated PC or separate control unit.
  • Have USB connection for data logging.
  • Have been designed to fit into laminar flow cabinets or under fume hoods.
  • Both systems measure: 506 L X 216 W X 540 H MM [19.9 X 8.5 X 21.3 IN]

The main differences between the Next Level and the Advanced is that the Next Level has 3 controlled independent heating zones and a maximum temperature of 350° C. The Advanced can go up to 450° C and has four controlled independent heating zones. The Advanced also has a mixing section built into the extruder screw. The Advanced has been designed for the extrusion of high temperature materials such as PEEK and other engineering plastics.

3devo OLED display and central controls.
3devo OLED display and central controls.

The 3devo Next Level costs €3,450. The 3devo Advanced costs 4,050 for the black powder coated variant and €4,200 for anodized variant (Prices exclude VAT). You can buy both filament extruders online from our shop or contact us should you need more information.

We believe that complex challenges demand elegant solutions. The 3devo family of Advanced Level (Industrial) Desktop Filament Extruders has been created because we believe that researchers, universities, makers, 3D printing companies and compounders should have access to highly reliable industrial grade desktop filament extrusion so that they can innovate faster.

By developing and manufacturing a filament extruder with high tolerances we can help academics and commercial businesses create new unique high performance engineering plastics.

A 3D printed object made with filament from the 3devo extruder.
A 3D printed object made with filament from the 3devo extruder.
3d_printed_object_3devo_filament
Nervous System’s Cellular Lamp made with PLA filament made on a 3devo extruder.

Additionally, by letting manufacturers, 3D printer operators and 3D printing services use lower cost regrind and virgin plastic granulate we can lower the costs for 3D printing filament. By letting people develop and manufacture recycled 3D printing filament we help our industry reduce the ecological and financial cost of 3D printing in lockstep. We hope that this will push our industry forward by making more end use parts, more applications and more business cases possible with 3D printing. We see ourselves as an engineering company first and a start up second. We are a force multiplier for the 3D printing industry and aspire to be the engineers behind some of the most well regarded tools in your lab, manufacturing floor or workshop. We’re 3devo, Pleased to meet you!

3devo Next with two spools.
3devo NEXT Industrial Filament Extruder with two spools.

Portfolio Items