Posts

What is the Future of 3D Printer Filament?

 

You may find yourself standing over a cold 3D printer asking questions “How can I make my 3D models stand out more?” or even  “What is the meaning of filament?”.  Well, we have some news for you. You are not alone.

Filament is the lifeblood of most 3D printers. Without it, you couldn’t print your designs.

Once you have an understanding of the basics of filament, keeping up to date with the latest innovations and trends in 3D printing and filament technology will help you continue to improve your craft. Increasing your capabilities allows you to make more with less and produce prints that were previously out of your reach.

Patent Drawing for First 3D Printer

Patent Drawing for First 3D Printer Patent. 3D Printing Filament has come a long way since its first applications in the early 80’s – from primarily being made of single use resins to the re-formable, highly durable plastics used today.

One thing is certain, the filaments used in 3D printing will continue to evolve. The best makers know the …

Top Trends in 3D Printer Filament

  1. Improvements in 3D Printing Technology
  2. Increased Variety of Exotic Blend Filament
  3. Powdered Materials for Custom Blends
  4. Experimental and Optimized Filaments
  5. Custom Filament Colors
  6. Recycled Materials in Filament
  7. Plant Based, Sustainable Filament
  8. Spool-less Filament Rolls

 

1. 3D Printing is Becoming More Affordable
With printers becoming less expensive and more efficient, small businesses and startups are getting their own 3D printing setups to increase the speed of product development. New types of businesses are utilizing this technology for different applications as well.

Though we aren’t past the “Should I Buy a 3D Printer” stage, the industry has developed greatly in recent years. More printers on maker’s desks means more projects will be printed and more filament will be used.

 

2. Exotic Blends Are Friends

Filament blends allow you to create the right look and physical properties for your 3D printing project. If “Exotic Materials” sound exciting to you, it’s because they are.  Here are some of the hottest blends out:

  • Wood – looks great with its natural tones and can even transfer the scent of the donating tree.
  • Metal – strong, heavy and sleek. Using it can also make your prints magnetic and carry an electrical charge or signal.
  • Minerals – such as sandstone, glass and gemstones can be added to create different textures, finishes and other properties to the filament.

Exotic materials such as wood and metal are being used to generate specific properties in filament.

 

3. Powders Mix Better (than granulate)

Though it takes more time to produce, powdered feed stock mixes more uniformly for complex filament formulations. As new material blends are created, powdered feed material is getting a respectable place in filament production.

Specifically, higher concentrations of metals and exotic materials can be mixed when using powders and the filament consistency is much higher for complex blends.

 

4. Experiment and Control

Different projects have different requirements. While 3D printing is now established enough for commercial use, it is still at a stage where improvements can be made to filaments.

You can come up with your own formulations for best results which is very helpful in the prototype stage. By testing the attributes of different filament blends and logging the results, you can optimize your filament to suit specific project needs. Get your calculator out!

 

5. Customized Filament Colors

Variety is the spice of life. Having a wide array of colors to choose from is great help in making a vivid 3D print. In the past, there weren’t as many color options available for printer filament.

Sometimes, the color has to be exact. Makers are now creating their own custom filament colors to match branding or visual requirements for their clients and project requirements.

There are even companies like colorFabb that can create a vast range of filament colors for you to use on your 3D printing project.

alt colors colours

No longer stuck with a handful of options, 3D Printer Filaments Colors can be customized to project needs.

 

6. Time to Recycle

With the cost of quality filament extruding equipment coming down, it is easier than ever to make your own custom blend of filament to fit your project’s needs, including strength, appearance.

You can now recycle your existing models, print waste and even plastic bottles by first breaking it up, grinding it down, and then granulating it to a consistent size. Then you can take that granulate and form filament with an extruder.

 

7. Made From Sustainable Materials

Some may say that our environment has seen better days. Filaments made from PLAs (polylactic acid) use a plant based plastic that is biodegradable.

These new filaments made from plants, called bio-plastics or biopolymers, are sustainable and less likely to clog up landfills as they break down naturally over time.

3d filament plant based

3D Printing Filaments can be made from sustainable, plant-based plastics

 

8. Too Cool for Spools

Filament spools are heavy to ship and create a lot of waste for busy printers.

Recently, there has been a push to remove the spool from filament rolls. Look out for MakerSpool, a printable spool to load spool-less filament stock onto for
the feed cycle.

A lot of makers are extruding their own material around used filament spools, saving the need for shipping and disposing of print waste.

Future of Filament – Now You Know

Now that you know all the latest trends and innovation in the world of 3D Printing Filament Technology, perhaps you will incorporate it into your next project or streamline your materials sourcing.

At 3devo, we’re just getting started. Make sure to subscribe to our social media to keep up to date with everything 3D Printing.

Did we miss anything? Are you or your organization doing anything exciting in the world of 3D printing? Drop us a line here.

 

PET Recycling – From Bottle to Filament

Recycling. A word often related to large companies receiving tons and tons of paper or plastic in an effort to reduce our carbon footprint. However if we look at plastic bottles for instance, humans buy a million plastic bottles per minute, and 91% of all plastic is not recycled. This article is going to cover what makes plastic recycling so important, how to recycle PET and the future of recycling in 3D printing.

What is PET Recycling?

Focusing on plastic bottles here, they have one huge advantage – unlimited recycling potential. PET is one of the few polymers that can be recycled into the same form over and over again. Think of it as a closed-loop recycling solution.

PET recycling loop

The “closed-loop” of PET recycling. Image via PETCO

Recycled PET, or rPET, can be used to make many new products. This can range from clothing, automotive parts, packaging as well as bottles for food/non-food products. Depending on the application required, rPET will be blended with the original PET.

What Are The Uses of Recycled PET (rPET)?

As mentioned above, rPET has many great uses, which includes:

  • Food containers
  • Polyester carpet fiber
  • Fabric for T-shirts
  • Athletic shoes
  • Luggage and upholstery
  • Sweaters and fiberfill for sleeping bags and winter coats
  • Industrial strapping
  • Sheet and film
  • Automotive parts
  • New PET containers

Some recycled PET products

Using rPET in place of the normal or virgin PET has substantial environmental impacts as well as reducing overall energy consumption.

Creating Our Own Filament from Plastic Bottles

Now that we’ve covered the background of recycling PET, how exactly does one go about doing the actual recycling? The one method is simply going to your local recycling company and dumping your plastic waste there, or having it picked up at home if that company provides a pick-up functionality. The other method though is a bit more rewarding – doing it yourself.

Drying the bottles

We wanted to test of normal plastic bottles can be turned into 3D printing filament. The following is a quick summary of our tests to turn around 30 bottles into filament.

  • Water bottles were collected, cleaned (properly) and any external caps or seals were also removed
  • The bottles were then vacuum sealed and heated to reduce their size
  • Once cooled the bottles were cut into smaller chunks with a saw and a pair of scissors
  • After that, the pieces were shredded into tiny pieces using our SHR3D IT
  • The pieces were then dried at a temperature of 160°C for 4 hours
  • The PET was then fed into our Next filament extruder
  • After multiple tests at different nozzle diameters and temperatures, our team ended up with a great result of PET filament
PET Filament Final Result

Final results of the filament

Click for the complete test and the different results.

The Future of Plastic Recycling in 3D Printing

The biggest issue that faces 3D printing recycled filament – dirt. With the above experiment, just cleaning those bottles took a great deal of effort. Now imagine doing it with tons of plastic, often coming from dumps that have been contaminated all forms of impurities.

Also, one has to take note that different types of plastic produce different types of filament. High-density polyethylene — shampoo bottles, for example — are relatively easy to convert into filament, but it’s difficult to print with because it shrinks more than other plastics as it cools. On the other hand, PET, prints well but is brittle, making it difficult to spool as filament.

Recently, we saw the US Department of Defense (DoD) is exploring 3D printing feedstock made from plastic containers that have been left on the battlefield, which can hopefully be reproduced in other government sectors. There’s also Ethical Filament, a company focused on promoting the concept of recycling to produce ethical 3D printing filament that is sold to improve the livelihoods of waste pickers and their communities worldwide. Then there’s the Perpetual Plastic Project (PPP), which is an installation which can directly recycle old plastic drinking cups into 3D printing gadgets as well as other plastic products if needed.

While there is more and more aware of using recycled filament for 3D printing, we still have a long way to go. Hopefully, with the rise in 3D printing over the last few years, more emphasis is being placed on plastic recycling.

Fontys University uses NEXT for hands-on training

The NEXT filament maker has become a part of the polymer studies department at Fontys University of Applied Sciences…

3devo launches the first Industrial Desktop Filament Extruders

3devo recycler next to four filament colors in 1.75mm and 2.85 and also orange and green granulate.

The 3devo Industrial Desktop Filament Extruder

3devo has just launched not one but two Industrial Desktop Filament Extruders, the 3devo NEXT 1.0 and 3devo Advanced. Whereas there have been several notable maker made filament extrusion devices and there are many different types of large industrial extruders available, the 3devo machines are the first of their kind. The NEXT and Advanced put high reliability, repeatability and tolerances in a small form factor. For the first time a robust and reliable industry grade filament extruder device is available for your desktop. The NEXT Level and Advanced are the world’s first Industrial Desktop Filament Extruders.

On the left we have the blank anodized filament recycler and on the right the black powder coated model.

The Blank Anodized and Black powder coated 3devo NEXT and 3devo Advanced, front and side view respectively.

The 3devo NEXT 1.0 Next Level is targeted at makers, 3D printing shops and universities that wish to:

  • Lower the cost of 3D printing by a factor of 7 by using regrind or virgin pellets to make filament.
  • Wish to lower the environmental cost of 3D printing by recycling materials such as ABS or PET to make 3D printing filament.
  • Simultaneously lower the financial and environmental cost of 3D printing to approximately $1.25 per Kilo of material by using readily available recycled materials in house.
  • Have significant amounts of old 3D prints, unused 3D prints, missprints or old filaments that they wish to recycle.
  • Wish to experiment with creating their own filaments or making new 3D Printing materials.
3dprint, 3devo, filament extruder

The 3devo Industrial Filament Extruder, side view.

The 3devo NEXT 1.0 Advanced has been specifically created for compounders, extrusion companies, researchers, plastics companies, universities and 3D printing companies who wish to:

  • Accelerate the pace of plastics innovation by allowing for cost effective small batch production of new grades, new materials or variants.
  • Increase the rate of plastics innovation by allowing for more experimentation at higher rates by placing a filament extruder tableside to the individual researcher.
  • Create their own grades or types of 3D printing filament.
  • Create their own grades or types of plastic or new plastics.
  • Produce up to 0.7 Kg of 3D printing filament per hour.
Spool of material and virgin granulate plastic.

Spool of material and virgin granulate plastic with some 3D printed parts.

Both the 3devo NEXT 1.0 Next Level and the NEXT 1.0 Advanced:

  • Are manufactured in the Netherlands.
  • Have independent heating zones with independently set temperatures (3 heating zones for the NEXT and 4 for the Advanced).
  • Are built to last.
  • Have a Self-regulating filament diameter control system. (This lets you set the desired diameter and ensures for consistent output of the extruded filament).
  • A capacity of up to 0.7 Kg of material per hour.
  • A diameter sensor with 43 Micron accuracy.
  • Use high end materials and parts.
  • Have a hardened Nitrite steel extruder screw with compression zone.
  • Have been designed to supply variable torque at consistent RPM.
  • Have high precision RPM encoder feedback.
  • Have automated motor control.
  • An Extrusion diameter that can be set between: 0,5 – 3,0 MM
  • Have Hoppers with Built-in material level sensor (this lowers the risk of ‘dry running’).
  • A powerful cooling system for high speed extrusions.
  • Automatic spool winding.
  • An easy to use spool mount that can variably set for different spools.
  • Have an easy to use interface.
  • Have material presets for ABS and PLA.
  • Let you set and define your own preset materials settings as well.
  • Let you manually adjust temperatures and speeds on the fly.
  • Are stand alone devices that do not need a dedicated PC or separate control unit.
  • Have USB connection for data logging.
  • Have been designed to fit into laminar flow cabinets or under fume hoods.
  • Both systems measure: 506 L X 216 W X 540 H MM [19.9 X 8.5 X 21.3 IN]

The main differences between the Next Level and the Advanced is that the Next Level has 3 controlled independent heating zones and a maximum temperature of 350° C. The Advanced can go up to 450° C and has four controlled independent heating zones. The Advanced also has a mixing section built into the extruder screw. The Advanced has been designed for the extrusion of high temperature materials such as PEEK and other engineering plastics.

3devo OLED display and central controls.

3devo OLED display and central controls.

The 3devo Next Level costs €3,450. The 3devo Advanced costs €4,050 for the black powder coated variant and €4,200 for anodized variant (Prices exclude VAT). You can buy both filament extruders online from our shop or contact us should you need more information.

We believe that complex challenges demand elegant solutions. The 3devo family of Advanced Level (Industrial) Desktop Filament Extruders has been created because we believe that researchers, universities, makers, 3D printing companies and compounders should have access to highly reliable industrial grade desktop filament extrusion so that they can innovate faster.

By developing and manufacturing a filament extruder with high tolerances we can help academics and commercial businesses create new unique high performance engineering plastics.

A 3D printed object made with filament from the 3devo extruder.

A 3D printed object made with filament from the 3devo extruder.

3d_printed_object_3devo_filament

Nervous System’s Cellular Lamp made with PLA filament made on a 3devo extruder.

Additionally, by letting manufacturers, 3D printer operators and 3D printing services use lower cost regrind and virgin plastic granulate we can lower the costs for 3D printing filament. By letting people develop and manufacture recycled 3D printing filament we help our industry reduce the ecological and financial cost of 3D printing in lockstep. We hope that this will push our industry forward by making more end use parts, more applications and more business cases possible with 3D printing. We see ourselves as an engineering company first and a start up second. We are a force multiplier for the 3D printing industry and aspire to be the engineers behind some of the most well regarded tools in your lab, manufacturing floor or workshop. We’re 3devo, Pleased to meet you!

3devo Next with two spools.

3devo NEXT Industrial Filament Extruder with two spools.

Portfolio Items